Meta-domains for Autotmated System Indentification *

Matthew Easley
Elizabeth Bradley

CU-CS-904-00

—
1 7
(%! 3 University of Colorado at Boulder
" DEPARTMENT OF COMPUTER SCIENCE

* Supported by NSF NYI #CCR-9357740, ONR #N00014-96-1-0720, and a Packard Fellowship in Science and Engineering from the
David and Lucile Packard Foundation.

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display acurrently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
2000 2. REPORT TYPE 00-00-2000 to 00-00-2000
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Meta-domains for Automated System | ndentification £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Department of Computer Science,University of REPORT NUMBER
Colorado,Boulder,C0O,80309

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

seereport

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18 NUMBER | 19a NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 18
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO NOT
NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

Meta-domains for Automated System
Identification

Techincal Report #CU-CS-904-00
In review for ANNIEOO

Matthew Easley and Elizabeth Bradley *
University of Colorado at Boulder
Department of Computer Science

Boulder, Colorado 80309-0430
{easley,lizb}@cs.colorado.edu

May 30, 2000

Abstract

‘We present a new knowledge representation and reasoning framework
for modeling nonlinear dynamical systems. The goals of this framework are
to smoothly incorporate varying levels of domain knowledge and to tailor
the search space and the reasoning methods accordingly. In particular, we
introduce a new structure for automated model building known as a meta-
domain which, when instantiated with domain-specific components, tailors
the space of candidate models to the system at hand. The xmission-line
meta-domain, for instance, generalizes the notion of an electrical trans-
mission line. It uses an iterative template to build models, and it may
be easily customized into specific model-building domains, ranging from
mechanical vibrations to thermal conduction. We combine this abstract
modeling paradigm with ideas from generalized physical networks, a meta-
level representation of idealized two-terminal elements, and a hierarchy of
qualitative and quantitative analysis tools, to produce dynamic modeling
domains whose complexity naturally adapts to the amount of available
information about the target system.

*Supported by NSF NYI #CCR-9357740, ONR #N00014-96-1-0720, and a Packard Fel-
lowship in Science and Engineering from the David and Lucile Packard Foundation.

1 Introduction

System identification (SID) is the process of identifying a dynamic model of
an unknown system. The challenges involved in automating this process are
significant, as applications in different fields of science and engineering demand
different kinds of models and modeling techniques. System identification entails
two steps, as shown in Figure 1: structural identification, wherein one ascertains

initialization - structural -
identification

aX + bsin(x) = 0

sensor' parameter
data | estimation

y

yes no

1.0% - 98.08in(x) = 0= success?

Figure 1: The system identification process

the general form of the model as described by an ordinary differential equation
or ODE (e.g., aZ + bsin(z) = 0 for a simple pendulum), and then parameter
estimation, in which one finds specific parameter values for the unknown coef-
ficients that fit that model to observed data (e.g. a = 1.0, b = —98.0). For
nonlinear systems, parameter estimation is difficult and structural identification
is even harder; Al techniques can be used to automate the former[6], but the
latter has, until now, remained the purview of human experts.

A central problem in any automated modeling task is that model complexity,
and hence the size of the search space, is exponential in the number of model
components unless severe restrictions are placed on the model-building process.
A good compromise between black-box modeling, which uses no domain knowl-
edge but has a prohibitively large search space, and clear-box modeling, where
the modeler knows a great deal about the system, is gray-box modeling. Here,
partial information about the internals of the box—e.g., whether the system is
electronic or viscoelastic—is used to prune the search space to a reasonable size.
The key to making gray-box modeling of nonlinear dynamical systems practi-
cal is a flexible knowledge representation scheme that adapts to the problem at
hand.

The solution proposed in this paper combines a representation that allows for
different levels of domain knowledge, a set of reasoning techniques that are ap-
propriate to each level, and a control strategy that invokes the right technique

at the right time. In particular, we introduce a new structure for automated
model building known as a meta-domain which, when instantiated with do-
main components; tailors the model generation search space to a specific system
identification task. To increase a meta-domain’s applicability and utility, we
also incorporate ideas from generalized physical networks[18], a meta-level rep-
resentation of idealized two-terminal elements, traditional compositional model
building[12], and qualitative reasoning[21]. The intent is to span the spectrum
between highly specific frameworks that work well in a single, limited domain
(e.g., a spring/dashpot vocabulary for modeling simple mechanical systems) and
abstract frameworks that rely heavily upon general mathematical formalisms at
the expense of having large search spaces. [7]).

2 Meta-domains for Model Building

Theoretically, an automated system identification tool could rely solely upon a
brute-force model generator for its structural identification phase and a nonlin-
ear parameter estimator for its testing phase. However, many implementation
issues make this wholly impractical: parameter estimation is extremely expen-
sive, and even simple application domains have an exponential number of valid
models. Consider, for example, all of the permutations of a single electrical re-
sistor, capacitor, and inductor connected in parallel and/or series. Although the
complete set of permutations does describe all possible models that can be built
with this set of components, the number of functionally different models in the
set is significantly less.

The key to effective model building is to exploit this kind of knowledge to
create an appropriate set of models that describes interesting behaviors without
creating an overly large search space. Domain-specific reasoning is also impor-
tant in the test phase, since models should be tested using abstract, high-level
reasoning whenever possible. The information on which the generate and test
phases are based, however, is highly heterogeneous, varying greatly in utility,
applicability, and form, and it can be very difficult to tailor the reasoning level
to the task. More-restrictive domains tend to admit more-powerful analysis tools
and have much smaller search spaces. In linear mechanical systems, for instance,
the impulse response shows the natural resonant and anti-resonant frequencies
as spikes, and the mode shapes between those spikes show whether a vibrating
mechanical system is mass- or stiffness-dominated[14]. In viscoelastics, an even
more restrictive domain, three qualitative properties of a “strain test” can be
exploited to reduce the search space of models to linear[10]. Assessing when and
how to apply these types of tools is a non-trivial knowledge representation and
reasoning problem..

Our term for a set of representation and reasoning tools for automatic model
construction and testing is a model-building domain, which contains:

e A set of prototypical domain components

e A model generator—a function that combines components into candidate

models

o A set of data analysis tools that create qualitative and quantitative knowl-
edge appropriate to the system at hand

o A set of rules and associated reasoning modes that apply this knowledge
to discover inconsistencies between the candidate model and the unknown
system.

Model building domains are similar in that they begin with a set of components
and return a candidate ODE model; they differ not only in their generality (and
thus the size of their search spaces) but also in the type and utility of their
analysis tools, reasoning modes, and rules.

Creating an individual model-building domain from scratch for each specific
application is inefficient,however, since many of the representations and .rea-
soning tools involved in model generation apply to multiple domains. Rather,
one wants a hierarchy of domains, where the specific domains can inherit the
structure of their more-general parents. Our hierarchy is designed so that more-
general domains, such as linear-systems, can be easily customized into more-
specific ones, such as linear-mechanical-systems. Analysis tools may also
exploit such a hierarchy; nonlinear time-series analysis, for example, can reveal
the lower bound on the dimensionality of any system of ODEs, whereas a step
response test is only useful in modeling linear systems, and a creep test is even
more domain-specific. The basic element of the hierarchy is a meta-domain: a
general framework that arranges components into models by relying on modeling
techniques that transcend individual application domains. This paper introduces
two such meta-domains: linear-plus and xmission-line. The linear-plus
meta-domain takes advantage of fundamental linear-systems properties that al-
low the linear and nonlinear components to be treated separately under cer-
tain circumstances, which dramatically reduces the model search space. The
xmission-line meta-domain generalizes the notion of building models using
an iterative pattern, similar to a standard model of a transmission line, which
is useful in modeling distributed systems. Meta-domains can be customized
into more-specific domains or used directly; we demonstrate both approaches
in the following section. We chose this particular pair of meta-domains as a
good initial set because they cover a wide variety of engineering domains; we are
exploring other possible meta-domains, especially for the purpose of modeling
larger nonlinear networks.

Designing a representation that was flexible and powerful enough to support
model-building in this domain/metadomain framework is a nontrivial problem.
Our solution is based on an energy-based modeling representation called gener-
alized physical networks (GPNs) which are similar to bond graphs[15] in that
they maintain conservation of energy through flow and effort state variables
but are easier to use as causality issues are not modeled. GPNs are general
and powerful enough to represent models in a wide variety of application areas,
and they adapt easily to different amounts of domain knowledge. In partic-
ular, they bring out similarities between components and properties in differ-

ent domains via generalized components such as linear-proportionall, which
models energy dissipation. An abstract component may be customized—into
linear-resistor, linear-damper, etc.—depending upon the application. In
this manner, the available domain knowledge selectively sharpens the model in
appropriate and useful ways.

3 Applying Meta-domains in PRET

PRET[5, 7] is an automatic SID tool that constructs ordinary differential equa-
tion (ODE) models of lumped-parameter continuous-time nonlinear dynamic
systems. It takes a generate-and-test approach, using a small, powerful domain
theory to build models, and then uses a body of mathematical and physical
knowledge encoded in first-order logic to test those candidate ODEs against
behavioral observations of the target system. Unlike other AI modeling tools—
most of which use libraries to build models of small, well-posed problems in
limited domains—PRET builds models of nonlinear systems in multiple domains
and uses sensors and actuators to interact directly and automatically with the
target system.

PRET relies heavily on the notions of model-building domains and meta-~
domains that were introduced in the previous section. It currently incorpo-
rates five specific GPN-based modeling domains: mechanics, viscoelastics,
linear-electronic, linear-rotational, and linear-mechanical: These do-
mains are dynamic: if a domain does not contain a successful model, it automati-
cally expands to include additional components. For example if PRET fails to find
a model in the linear-electronics domain, whose basic components include
{linear-resistor, linear-capacitor}, that domain automatically expands
to include linear-inductor. If a user wants to apply PRET to a system that
does not fall in an existing domain, he or she can either build one from scratch—
a matter of making a list of components and connectors—or use one of PRET’s
meta-domains. These meta-domains, which currently include linear-plus and
xmission-line, use modeling techniques that transcend individual application
domains: linear system fundamentals in the former and an iterative structure in
the second.

PRET has successfully been applied to a variety of system identification tasks,
ranging from textbook engineering problems to a radio-controlled car used in a
deployed robotics system[6]. This section presents two examples that demon-
strate how domains and meta-domains contribute to this process.

3.1 Modeling a Shock Absorber

Hydraulic shock absorbers, common in modern commercial vehicles, are complex
nonlinear devices whose behavior depends upon the amplitude and frequency
of the imposed motion. Accurate mathematical models of this behavior are

fiow is linearly proportional to effort

road

Figure 2: A one-degree-of-freedom quarter-vehicle model that includes a shock
absorber—a viscous damping element, B—connected in parallel with a spring,
K, and the loading effects of the car, M.

Deflection

IS

4

Time

Figure 3: Step responses of (a) a hydraulic shock absorber (dotted) (b) an
unsuccessful candidate model with a linear spring (dashed) and (c¢) a successful
model, which incorporates a cubic spring (solid).

key to realistic vehicle simulations and active-suspension controllers. Shock-
absorber models normally come in two forms: either as a stand-alone shock
absorber—typically just a connected spring and damper element—or as part of
a quarter-vehicle model, where the loading effects of one quarter of the vehicle
are included. The effects of different shock absorbers in one- and two-degree-of-
freedom quarter vehicle models may be found in [17]; the behavior of five damper
model variants, such as “no spring,” “velocity-dependent damping,” or “no linear
spring,” is described by [3]. This is exactly the kind of expert reasoning that
motivated the design of the domain knowledge framework described here; these
kinds of similarities make it easy for engineers to use PRET on real problems.
The user initializes PRET on a modeling problem through a find-model
call, a fragment of which is shown in Figure 4. The first line specifies the
domain (linear-mechanics) which instantiates the relevant domain theory; the
next informs PRET of the relationship between state variables. hypotheses
and drives are optional lists of model fragments describing different possible
aspects of the physics involved in the system, e.g. a spring force that obeys
a cubic version of Hooke’s law, and a constant drive term that represents a
constant normal force on the suspension. observations are facts about the
system (which are assumed to be true) and may be measured automatically by
sensor and/or interpreted by the user. In this case, the observations are a noisy

(find-model ‘
(domain linear-mechanics)
(state-variables (<x> (integral <v>)))
(hypotheses
(<force> (x k (cube (integral <v>)))))

(drive (<force> d))
(observations

(numeric (<time> <x>)

((0 1.3) (0.1 1.2y ...0)

(specifications

(<x> absolute-resolution 1.2 (0 15))))

Figure 4: A find-model call for the shock absorber. The state variable <v> is
velocity (i.e. v = %, where & = <x> is the deflection from the equilibrium posi-
tion). The hypothesis represents a cubic spring force: F = kz®. By default, the
linear-mechanics domain includes linear damping, inertia, and spring compo-
nents, so PRET’s user need not specify them explicitly. The numeric observation
is the noisy dotted time series shown in the previous figure.

time-series measurement of the deflection (shown graphically in Figure 3(a)).
By default, the linear-mechanics domain includes linear damping, inertia,
and spring components, so the user need not enter them explicitly; PRET’s
model generator will automatically include them along with the user-specified
hypotheses. Geometric pre-processing of the numerical observation shows that
the state variable <x> undergoes a damped oscillation to a fixed point. From
these facts, PRET’s model tester[19] deduces (among other things) that the order
of any linear model must be at least two. This qualitative information lets
PRET immediately rule out the first dozen or so candidate models. Proceeding
to slightly more complex ODEs, PRET generates the model ai + bi + cz +
d = 0, which is made up of three built-in domain hypotheses and the user’s
drive hypothesis. Its model tester cannot rule out this model using qualitative
reasoning techniques, and so is forced to invoke its nonlinear parameter estimator
to establish that the solution to this ODE, shown in Figure 3(b), does not match
the numeric observation shown in Figure 3(a). After discarding a variety of other
unsuccessful candidate models by various means, PRET eventually generates and
tests the ODE ai + bt + cx + kz3 +d = 0. This model passes all qualitative and
quantitative checks, and so is returned as PRET’s output:

. nc refutation ...
(model ((= (+ (* (const a) (deriv (deriv <x>)))
(* (const b) (deriv <x>))
(* (const c) <x>)
(* (const k) <x> <x> <x>)
(const d)) 0)
((a 1.00) (b 0.50) (c 0.31) (k 0.024) (d 1.30))))

The linear-mechanics domain can be implemented in several ways. The eas-
iest is to use the linear-plus meta-domain and add several domain-specific

components: linear-mass, 1inear-damping and linear-spring. These are
just the generalized components 1inear-capacitance, linear-resistance and
linear-inertia—renamed in a manner that makes their meaning obvious to
someone who would be using the linear-mechanics domain. Jargon match-
ing is only a small part of the power of meta-domain customization, however;
domain knowledge allows PRET to selectively sharpen its knowledge. If PRET
knows that the system is linear and mechanical, for instance, the general com-
ponent linear-inertia takes on the more-specific meaning associated with
linear-spring, such as the knowledge that mechanical springs often have ap-
preciable mass and internal friction that cannot be neglected.

Implementing the linear-mechanics domain using the linear-plus meta-
domain has another very important advantage for problems like this, which have
a few drive terms and a few nonlinear terms. linear-plus separates components
into a linear and a non-linear set in order to take advantage of two fundamental
properties of linear systems: (1) there are a polynomial number of unique nth-
order linear ODEs|[9], and (2) linear system inputs (drive terms) appear verbatim
in the resulting ODE system. The first of these properties converts an otherwise-
exponential search space to polynomial; functionally equivalent linear networks
reduce to the same Laplace transform transfer function, which allows PRET to
identify and rule out any ODEs that are equivalent to models that have already
failed the test. The second property allows this meta-domain (and thus any
specific domain constructed upon it) to handle a limited number of nonlinear
terms by treating them as system inputs. As long as the number of nonlinear
hypotheses remains small, the search space of possible models remains tractable.

PRET’s user could also skip the 1inear-mechanics domain and use the 1in-
ear-plus meta-domain directly for this problem, simply by specifying a few
extra terms in the hypotheses line of the find-model call (e.g., (<force> (* k
(integral <v>))) andsoon). The only difference between doing this and using
the 1inear-plus meta-domain with extra components would manifest in PRET’s
run time, as it would no longer be able to use domain knowledge to streamline
the generate and test phases. Indeed, one could even omit all hypotheses, since
PRET automatically performs power-series expansions if it runs out of user and
domain hypotheses, but that would increase the run time even further. The best
course of action is to use as much domain knowledge as possible, and PRET’s
layered domain/meta-domain framework is designed to make it easy to do so.

3.2 Water Resource Systems

Water resource systems are made up of streams, dams, reservoirs, wells, aquifers,
etc. In order to design, build, and/or manage these systems, engineers must
model the relationships between the inputs (e.g., rainfall), the state variables
(e.g., reservoir levels), and the outputs (e.g., the flow to some farmer’s irriga-
tion ditch). To do this in a truly accurate fashion requires partial differential
equations (PDEs) because the physics of fluids involves multiple independent
variables—not just time—and an infinite number of state variables. PDEs are
extremely hard to work with, however, so the state of the art in the water re-

land surface

N Ve g
water level

Figure 5: An idealized representation of an open well penetrating an artesian
aquifer. The motion of the water level in the well is controlled by sinusoidal
fluctuations of the pressure in the aquifer.

source engineering field falls far short of that. Most existing water resource
applications, such -as river-dam or well-water management systems, use rule-
based or statistical models. ODE models, which capture the dynamics more
accurately than these simple models but are not as difficult to handle as PDEs,
are a good compromise between these two extremes, and the water resource
community has begun to take this approach[8, 11]. In this section, we show how
meta-domains help PRET duplicate some of these research results and model the
effects of sinusoidal pressure fluctuation in an aquifer on the level of water in a
well that penetrates that aquifer. See Figure 5 for a schematic. This example is
a particularly good demonstration of how domain knowledge and the structure
inherited from the meta-domain let the model generator build systems without
creating an overwhelming number of models. This example also demonstrates
how GPNs allow PRET to model a variety of systems using the same underlying
representation and to incorporate the load effects easily and naturally into the
model.

The first step in.describing this modeling problem to PRET is to specify a
domain. Because there is no built-in “water resource” domain, the user would
have to choose (and perhaps customize) one of the meta-domains. For this
problem, the choice is obvious, as the xmission-line meta-domain is specifi-
cally designed for this kind of distributed physics, which turns up in fluid flows,
vibrating strings, gas acoustics, thermal conduction and diffusion, etc.[13]. This
meta-domain serves as a bridge between two very different paradigms. GPN
components represent prototypical lumped elements, each of which models a
single physical component, whereas a system like a transmission line or a guitar
string can be thought of as an infinite number of small elements (the basis of
a PDE model). Using the former to model the latter requires an incremental
approach. In particular, one can approximate a spatiotemporally distributed
system using an iterative structure with a large number of identical lumped sec-
tions, each of which corresponds to an ODE term. Figure 6 shows a diagram
of this: a generalized iterative two-port network with n sections, each of which
has a serial (4;) and a parallel (B;) component. In a basic model of an elec-

Figure 6: The xmission-line meta-domain allows PRET to use its lumped-
element GPN components to model spatially distributed systems.

(find-model
(domain xmission-line)
(state-variables (<well-flow> <flow>))
(hypotheses
(Keffort> (* c (integral <flow>)))
(Keffort> (* 1 (deriv <flow>)))
(Keffort> (* r <flow>)))
(drive (<effort> (* da (sin (* df <time>)))))
(observations
(not-constant <well-flow>)
(not-constant (deriv <well-flow>))
(numeric (<time> <well-flow> (deriv <well-flow>))
((0 4.0 0.5) (0.1 4.25 0.6) ...))) ...)

Figure 7: A find-model call fragment for the well/aquifer example of Figure 5.

trical transmission line, for example—whence the name of the xmission-line
meta-domain—typical electrical parameters, such as resistance or inductance,
are given in per-unit-length form, and the A; and B; would correspond to resis-
tors and capacitors, respectively.

As in the shock absorber example, PRET’s user can either customize the
meta-domain or use it directly. For the well/aquifer problem, this customization
would consist of renaming the general components linear-capacitance, -in-
ertia, and -resistance to match the standard domain vocabulary; capacitive
and resistive effects, in particular, simulate radial flow in an aquifer, and water
mass is treated as inertia. (These concepts and equivalences, which appear in
every textbook, are a routine part of a water-resource practitioner’s knowledge.)
The domain could be further customized based upon knowledge of the aquifer’s
forcing function; if the water’s velocity changes slowly, for example, inertia effects
can normally be ignored. For the purposes of demonstrating how one uses a
meta-domain directly, however, we omit this customization in this example, so
the find-model call of Figure 7 simply instantiates the xmission-line meta-
domain.

This call differs from the previous examples in a variety of ways. This meta-
domain has no built-in components; it only provides the template of an iterative
network structure. PRET must therefore rely solely on user-specified hypotheses

10

Source ! Aquifer ! Well
: Cq Ly C; Lo : Cw Ly
| |
: R1 R2: <well-flow> RW
| |
I !

Figure 8: PRET’s model of the well/aquifer system. The drive, V' = d, sindyt,
simulates a sinusoidal pressure fluctuation in the aquifer; the arrow labeled
<well-flow> in the network corresponds to the water flow into and out of
the well. Note how the xmission-line meta-domain and GPN components
naturally incorporate the load (the well) into the model.

to build models?. State variables in hypotheses bear domain-independent names
like <effort> and <flow>, rather than domain-specific ones like <force>, or
<water-flow>. The xmission-line meta-domain builds models with an iter-
ative structure, using these <flow> and <effort> hypotheses as the parallel
and series components of the sections and dynamically creating instances of
each kind of state variable as segments are added to the model. Since nu-
meric observations describe specific state variables (e.g. the numerical observa-
tion of <well-flow> in the find-model call), their identifiers are prespecified
in the state-variables line of the call. Finally, unlike the shock absorber,
the well/aquifer includes a nonautonomous drive term—one that has an explicit
time dependence. , ,
As before, PRET automatically searches the space of possible models, using
the xmission-line meta-domain template to build models and qualitative and
quantitative techniques to test them, until a successful model is found. The
result is shown in Figure 8. A perfect model of an infinite-dimensional PDE
requires an infinite number of discrete sections, but one can construct approx-
imations using only a few sections, and the fidelity of the match rises with the
number of sections®. In this case, PRET used two xmission-line sections to
model the aquifer and one to model the well. This incorporation of the well as an
integral part of the model is an important feature of the model-building frame-
work described in this paper. Finally, like linear-plus, the xmission-line
meta-domain lets PRET avoid duplication of effort. Connecting arbitrary com-
ponents in parallel and series creates an exponential number of models, many
of which are mathematically equivalent (cf., Thévenin and Norton equivalents,
in network theory). The xmission-line meta-domain avoids this duplication
by first limiting the number of possible component combinations in the initial
network model (4; and B; of Figure 6), and then incrementing this structure

2In other domains, PRET uses power-series expansions if it runs out of user hypotheses.
Since the basic paradigm in xmission-line is essentially a spatial expansion, a power-series
expansions would be a duplication of effort.

3Hence the notion of an ODE truncation of a PDE, which is exactly what PRET is con-
structing here.

11

to a limited depth before attempting another initial network.

4 Related Work

Much of the pioneering work in the qualitative reasoning (QR) modeling com-
munity focuses on reasoning about pre-existing models: simulating them[16],
simplifying and refining them[20], or keeping track of which model is appropri-
ate in which regime[1]. QR model construction research has focused on building
models from fragments[4, 12]. PRET uses some of the same techniques but has
different goals and a different overall approach: it works with noisy, incomplete
sensor data from real-world systems and attempts not to “discover” the under-
lying physics, but rather to find the simplest ODE that accounts for the given
observations.

In the QR research that is most closely related to PRET’s domains and meta-
domains, ODE models are built by evaluating time series using qualitative rea-
soning techniques and then applying parameter estimation to match the result-
ing model with a given observed system[10]. This approach differs from the
techniques presented in this paper in that it selects models from a set of pre-
enumerated solutions in a very specific domain (linear viscoelastics). Amster-
dam’s automated model construction tool[2] uses a similar underlying component
representation (bond graphs) and is applicable to multiple domains. However,
it is also somewhat limited; it can only model linear systems of order two or
less. The domain/meta-domain framework described in this paper is much more
general; it works on linear and nonlinear lumped-parameter continuous-time
ODE:s in a variety of domains, and it uses dynamic model generation to handle
arbitrary devices and connection topologies.

5 Conclusion

Model-building domains and meta-domains, coupled with generalized physical
networks and a hierarchy of qualitative and quantitative reasoning tools that re-
late observed physical behavior and model form, provide the flexibility required
for gray-box modeling of nonlinear dynamical systems. The two meta-domains
introduced in this paper, linear-plus and xmission-1line, use modeling tech-
niques that transcend individual application domains to create rich and yet
tractable model search spaces. This framework is flexible as well as powerful;
one can use meta-domains directly or customize them to fit a variety of engineer-
ing applications. Both domains and meta-domains adapt smoothly to varying
amounts and levels of domain knowledge.

References

[1] S. Ad&anki, R. Cremonini, and J. Penberthy. Graphs of models. Artificial
Intelligence, 51:145-178, 1991.

12

[2] J. Amsterdam. Automated Qualitative Modeling of Dynamic, Physical Sys-
tems. PhD thesis, MIT, 1992.

[3] F. Besinger, D. Cebon, and D. Cole. Damper models for heavy vehicle ride
dynamics. Vehicle System Dynamics, 24:35-64, 1997.

[4] D. Bobrow, B. Falkenhainer, A. Farquhar, R. Fikes, K. Forbus, T. Gruber,
Y. Iwasaki, and B. Kuipers. A compositional modeling language. In QR-96,
1996.

[5] E. Bradley, M. Easley, and R. Stolle. Reasoning about nonlinear system
identification. Technical Report CU-CS-894-99, University of Colorado at
Boulder, 2000. In review for Artificial Intelligence.

[6] E. Bradley, A. O’Gallagher, and J. Rogers. Global solutions for nonlinear
systems using qualitative reasoning. Annals of Mathematics and Artificial
Intelligence, 23:211-228, 1998.

[7] E. Bradley and R. Stolle. Automatic construction of accurate models of
physical systems. Annals of Mathematics and Artificial Intelligence, 17:1-
28, 1996.

[8] J. Bredehoeft, H. Cooper, and 1. Papadopulos. Inertial and storage effects
in well-aquifer systems. Water Resource Research, 2:697-707, 1966.

[9] W. Brogan. Modern Control Theory. Prentice-Hall, New Jersey, 3rd edition,
1991.

[10] A. Capelo, L. Ironi, and S. Tentoni. Automated mathematical modeling
from experimental data: An application to material science. IEEE Trans-
actions on Systems, Man and Cybernetics - C, 28:356-370, 1998.

[11] D. Chin. Water-Resource Engineering. Prentice Hall, New Jersey, 2000.

[12] B. Falkenhainer and K. Forbus. Compositional modeling: Finding the right
model for the job. Artificial Intelligence, 51:95-143, 1991.

[13] M. Ghausi and J. Kelly. Introduction to Distributed-Parameter Networks.
Holt, 1968.

[14] J.-N. Juang. Applied System Identification. Prentice Hall, Englewood Cliffs,
N.J., 1994.

[15] D. Karnopp, D. Margolis, and R. Rosenberg. System Dynamics: A Unified
Approach. Wiley, New York, second edition, 1990.

[16] B. Kuipers. Qualitative simulation. Artificial Intelligence, 29:289-338, 1986.

[17] R. Langlois and R. Anderson. Preview control algorithms for the active
suspension of an off-road vehicle. Vehicle System Dynamics, 24:65-97, 1997.

13

(18] R. Sanford. Physical Networks. Prentice-Hall, 1965.

[19] R. Stolle and E. Bradley. Multimodal reasoning for automatic model con-
struction. In AAAI-98, 1998.

[20] D. Weld. Reasoning about model accuracy. Artificial Intelligence, 56:255—
300, 1992.

[21] D. Weld and J. de Kleer, editors. Readings in Qualitative Reasoning About
Physical Systems. Morgan Kaufmann, San Mateo CA, 1990.

14

